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Nanoparticle chemisorption printing technique for
conductive silver patterning with submicron
resolution
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Silver nanocolloid, a dense suspension of ligand-encapsulated silver nanoparticles, is an

important material for printing-based device production technologies. However, printed

conductive patterns of sufficiently high quality and resolution for industrial products have not

yet been achieved, as the use of conventional printing techniques is severely limiting.

Here we report a printing technique to manufacture ultrafine conductive patterns utilizing the

exclusive chemisorption phenomenon of weakly encapsulated silver nanoparticles on a

photoactivated surface. The process includes masked irradiation of vacuum ultraviolet light

on an amorphous perfluorinated polymer layer to photoactivate the surface with pendant

carboxylate groups, and subsequent coating of alkylamine-encapsulated silver nanocolloids,

which causes amine–carboxylate conversion to trigger the spontaneous formation of a

self-fused solid silver layer. The technique can produce silver patterns of submicron fineness

adhered strongly to substrates, thus enabling manufacture of flexible transparent conductive

sheets. This printing technique could replace conventional vacuum- and photolithography-

based device processing.
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M
etal nanoparticles can be densely suspended in
dispersion media if the metals are encapsulated by
insulating ligand layers1. These protect the active or

unstable bare metal surfaces and preserve the high surface-
area-to-volume ratio of the nanoparticles, preventing the
self-aggregation2,3, coalescence4, welding5, decreased melting
temperature6,7 or liquid droplet-like deformation, especially for
silver nanoparticles (AgNPs) at room temperature8,9.

Concentrated silver nanocolloids, or nanometal inks,
composed of encapsulated AgNPs have recently attracted
considerable attention for applications in environmentally
friendly printing-based device production (that is, printed
electronics) technologies10–15. Printed electronics technologies
are crucial in realizing a low-consumption society, as they
save resources, energy and time in the creation of flexible,
large-area and ambient devices. The large-scale production of
monodispersed AgNPs has progressed considerably16–19. Several
cases of direct chemical synthesis of encapsulated AgNPs were
reported, utilizing thermolysis processing of precursor silver
complexes, the ligands of which later served as encapsulating
layers18,19. These techniques are promising for producing inks for
printed electronics, as they may allow predesigned encapsulating
layers with tunable coordination strengths while maintaining the
equilibrium metastability of the ink.

Much effort has been dedicated to manufacturing fine metal
wiring patterns by various printing methods, such as screen or
inkjet printing, with nanometal inks10–15. However, the obtained
printed patterns have not yet offered the material quality, pattern
resolution, substrate compatibility or substrate adhesion required
for most industrially available electronic devices20,21. These
limitations result from the physisorption phenomena of the
fluidic nanometal inks utilized. The inherent liquid nature of the
inks results in unsatisfying resolution or quality of the printed
deposits, such as non-uniform layer thickness due to the coffee-
ring phenomenon22–24. The incompatibility of the encapsulating
layer before and after the printing deposition is also critical.
While the layer is necessary for stabilizing the nanocolloid, it
must be removed after deposition to restore the metal
conductivity. To remove the encapsulated layer, annealing is
used to fuse the AgNPs at high temperatures, although this
frequently creates fatal voids and cracks in the conductive circuits
and distorts heat-sensitive flexible plastic substrates. Considering
these difficulties and dilemma, an ideal method would restore the
self-aggregating ability of bare AgNPs at predefined positions by
selectively removing the ligand encapsulation. Such a method has
not yet been reported.

In this study, we report an innovative printing principle to
manufacture ultrafine conductive patterns through an exclusive

chemisorption (that is, surface chemical reaction) of AgNPs that
triggers the self-aggregating ability of AgNPs on predefined
photoactivated areas of a solid surface. For this purpose,
we utilize a stable, concentrated and low-viscosity silver
nanocolloid composed of AgNPs encapsulated in alkylamine
layers19. Alkylamine coordination is weaker than carboxylate
coordination, as demonstrated by the sintering temperature of
less than 150 �C. We use a photoactivated polymer surface with
pendant carboxylate groups, which combine more strongly with
bare silver surfaces. When the alkylamine-encapsulated fluidic
silver nanometal ink contacts the photoactivated surface,
self-fused solid silver layers form spontaneously and exclusively
on the photoactivated surface under ambient conditions. This
unique AgNP-based phenomenon enables the extremely simple
printing of large-area electronic circuits with submicron
resolution adhered strongly to flexible plastic substrates.

Results
Printing process and printed products. A schematic of the
process is presented in Fig. 1a,b. To produce a patterned
photoactivated surface, we used masked vacuum ultraviolet (VUV)
irradiation on the amorphous perfluorinated polymer poly[per-
fluoro(4-vinyloxy-1-butene)] (Cytop)25,26. We fabricated thin films
of Cytop by spin-coating it on silica, polyethylene naphthalate
(PEN) or polyethylene terephthalate (PET) substrates. The spin-
coated substrates were irradiated with VUV light at a wavelength
of 172 nm through a photomask. The polymer surface was then
exposed to the alkylamine-encapsulated silver nanometal ink (40–
60 wt% dispersed in a 4:1 mixed solvent of n-octane and n-
butanol) by blade coating under ambient conditions. A thin solid
silver layer eventually formed on the irradiated parts of the
polymer surface after the coating blade was swept, but the
unirradiated parts remained bare (Supplementary Movie 1). As a
result, fine silver patterns as shown in Fig. 2a–c were obtained. The
highest resolution obtained is a line width of 800 nm. The
resolution is 10-100 times higher than that obtained by
conventional screen or inkjet printing3,4,10–15,20,21,23,24.

The as-printed silver layer shows a high conductivity of
B1.0� 104 S cm� 1 with no post-treatment by heat. The
conductivity gradually improves with time or by subsequent
low-temperature annealing (o80 �C) to values reaching
1.0� 105 S cm� 1. The thickness profile of the silver layer is flat
against the line cross section, as presented in Fig. 3a. The silver
layer is adhered to the substrate surface with an adhesive force
exceeding 5 MPa. These characteristics differ from those of the
silver layers obtained by conventional printing technologies.
For comparison, we created a deposit on the unirradiated
polymer surface by a contact casting technique. The dried deposit
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Figure 1 | Procedure and principle of the printing method. (a) Schematic of the process. (b) Underlying mechanism.
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Figure 2 | Products of the printing method. (a) Optical micrographs of printed patterns of parallel lines with widths of 5, 3 and 0.8mm, respectively.

(b) Optical micrograph of the printed silver pattern for source and drain electrodes of thin-film transistor arrays. (c) SEM image of the printed parallel lines

with a width of 0.8mm. (d) Expanded SEM image of the perimeter of the printed silver line pattern. Right: Schematic of fused and non-fused AgNPs.

Scale bar: (a) 50mm; (b) 100mm; (c) 5mm; and (d) 100 nm.
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Figure 3 | Comparison with conventional wet/dewet patterning. (a) Thickness profiles of the printed silver lines at different line widths by the present

printing technique with silver nanometal ink with alkylamine encapsulation on photoactivated polymer surface, and (b) by conventional wet/dewet

patterning with water-based silver nanometal ink with alkyl-carboxylate encapsulation. The profile in (b) presents typical thickness distribution due to the

coffee-ring effect where the edge becomes thicker than the central region, while the profile in (a) presents flat distribution against the line cross section

with no area-size dependence. (c) Enlarged SEM images of cross-section of the printed silver layer with 60 wt% alkylamine-encapsulated silver nanometal

ink on photoactivated polymer surface, and (d) on unirradiated polymer surface. (c,d) Scale bar, 100 nm.
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was easily peeled off the polymer surface. The surface contact
angle of the dispersion solvent was B0� on the irradiated surface
and 34.3� on the unirradiated surface (Supplementary Fig. 1).
The difference in contact angle is similar to wet/dewet patterning
using surface-energy-patterned substrates27,28. The relatively high
dewetting nature is indispensable in achieving fine patterning,
because the nanometal ink is briefly spread on but can be
completely swept away from the unirradiated part during the
process. Nonetheless, the technique is essentially different from
typical wet/dewet patterning regarding the area-size dependence
of thickness distribution (Fig. 3b) and the adhesive strength to the
substrate surface.

Figure 3c presents an enlarged SEM image of the cross-section
profile of the printed silver layer (with 60 wt% nanometal ink)
adhered to the irradiated polymer surface. The fused silver layer
with a smooth interface with the polymer layer is formed, and the
spherical profiles of the AgNPs have completely disappeared.
The image indicates that the AgNPs are fully fused together,
despite the low-temperature (o80 �C) processing. In striking
contrast, the deposit produced by simple casting on the
unirradiated polymer surface exhibits particulate features and
voids near the interface with the polymer layer (Fig. 3d). The
thickness depends not on the area size, but on the ink
concentration (Fig. 4a). In the surface profiles of the printed
silver layer (Fig. 4b–d), the presence of particulate features
depends on the layer thickness: The surface SEM image of the
thin silver layer printed with 40 wt% nanometal ink has no
particulate features because complete self-fusion occurs, whereas
particulate features dominate the surface of the thicker silver layer
printed with 60 wt% nanometal ink. Note that the granular
morphology observed in Fig. 4b is also observed in a thin silver
layer fabricated by vacuum deposition on the same photoacti-
vated Cytop film surface (see Supplementary Fig. 2). Further-
more, a clear transition from fusion to non-fusion is observed at
the perimeter of the printed silver pattern (see Fig. 2b): The fused
silver layer grown on the irradiated polymer surface is
accompanied by a peripheral non-fused layer of spherical AgNPs.
This indicates that a small amount of nanometal ink remains and

dries on the neighbouring unirradiated area by capillarity, which
creates the residue of the peripheral non-fused layer.

Underlying mechanism of the printing process. To focus on the
microscopic aspects of the silver-layer formation, Raman spectra
as measured from the top surface of the silver layer and from the
bottom interface with the irradiated polymer film through the
transparent substrate are shown in Fig. 5a. Both sets of spectra
exhibit prominent and distinctly different vibrational features.
The measurement corresponds to surface-enhanced Raman
spectroscopy, in which the ligand molecules coordinated
(or adsorbed) to the AgNP surface can be sensitively detected29.
The spectrum from the top surface exhibits four peaks at 1,135,
1,280, 1,395 and 1,590 cm� 1 (Fig. 5a). These peaks likely relate to
the alkylamine group, associated with NH2 deformation, CH2

deformation and wagging, and CN stretching vibrations; the
observed features are much clearer than those of the former
report30,31. Well-ordered alkylamine coordination to the surface
of silver nano-structures may be responsible for the chemical
enhancement of the surface-enhanced Raman spectroscopy
signal. In contrast, two peaks at 1,360 and 1,570 cm� 1 are seen
from the bottom interface, which clearly differ from those from
the top surface (ii). Similar features were reported for a
carboxylate-coordinated silver surface32,33; the peaks were
assigned to symmetric and antisymmetric COO� stretching
and CH2 wagging vibrations. Similar features appear in other
cases, as shown in Fig. 5a; one is from the bottom interface of a
silver layer formed by the vacuum evaporation of silver on the
irradiated polymer surface (iii), while the other is from the top
surface of the deposit obtained by casting of a different silver
nanometal ink with alkylcarboxylate encapsulation (iv). The
latter signal can be ascribed to the coordination of the carboxylate
group to the AgNP surface. The observed two broad peaks
are quite similar to those of (ii) and (iii). We conclude that
the photoactivated area has pendant carboxylate groups, and that
the bare surface of the evaporated silver film is likely coordinated
by these carboxylate groups. Carboxylate groups on the
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Figure 4 | Ink concentration dependence of thickness and surface profiles of the printed silver layers. (a) Ink concentration dependence of thickness of

the printed silver layers. Error bars represent the range of data. (b) Top views of the printed silver layers with different layer thicknesses obtained by

printing nanometal ink with 40 wt%, (c) 50 wt% and (d) 60 wt% concentration, respectively. (b–d) Scale bars, 100 nm.
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photoactivated area should connect easily to bare AgNP surfaces
at room temperature, because the encapsulating alkylamine
molecules can be attached and detached at equilibrium
conditions. We conclude that the alkylamine coordination is
chemically converted to carboxylate coordination on the
irradiated polymer surface.

Regarding the origin of carboxylate group, VUV irradiation on
perfluorinated polymers has been reported to cause
photodegradation into several products, including carboxylic acid
pendants on the polymer chain34–37. We obtained both X-ray
photoelectron spectroscopy (XPS) and electron spin resonance
(ESR) spectra of the Cytop films before and after VUV
irradiation, as presented in Fig. 6. In the XPS spectra, the
irradiation decreases the intensity of the peak at 290.5 eV and
increases that of the peak at 286 eV (Fig. 6a). This spectral
variation is ascribed to difluoride carbons (�CF2� ) being
converted to different de-fluorinated chemical species of carbon.
The ESR spectra also demonstrate the generation of peroxy
radicals (Fig. 6b). One possible photodegradation process is
the cleavage of the ether bond (C�O) within the ring unit of
the polymer to produce carbon radicals (�C) and acid fluoride
(�CF¼O) end groups by VUV irradiation. Through exposure
to air, the former would be converted into peroxy radicals,
while the latter would be followed by the hydrolytic formation
of carboxylate groups. Thus, free carboxylate groups attached to
the polymer chain are generated by VUV photodegradation on
the surface of Cytop layers.

The irradiation-dose dependencies of the water contact angle
on the irradiated polymer surface and of the adhesive strength of
the printed silver layer to the substrate are shown in Fig. 5b.
The decreased water contact angle by increasing the irradiation
dose indicates the increased surface density of carboxylate groups.

With increased irradiation, the adhesive strength of the silver
layer to the substrate surface is increased considerably. High
conductivity is obtained by the high-enough irradiation
dose (B100 mJ cm� 2), while the conductivity becomes extremely
low at low irradiation dose (B20 mJ cm� 2). We found that at
this dose level the coated nanometal ink forms a network-like
pattern on the surface (see Supplementary Fig. 3). We conclude
that the printed silver layer is chemically bound to the polymer
layer through carboxylate coordination.

Based on all the observations above, we propose that when the
alkylamine-encapsulated fluidic silver nanometal ink contacts the
irradiated polymer surface with pendant carboxylate groups, it
promotes the amine–carboxylate conversion for encapsulated
AgNPs that triggers the spontaneous formation of a self-fused
solid silver layer. The following mechanism may be responsible
for the self-fusion process: as the alkylamine coordination is
relatively weak, the alkylamine would repeatedly attach to and
detach from the metal surface in the nanocolloid at room
temperature. When the nanometal ink makes contact with the
carboxylate-functionalized photoactivated surface, thermally
moving AgNPs are captured by the carboxylate coordination
when they collide with the photoactivated surface. When the
trapped AgNP density becomes sufficiently high at the surface,
the bare surfaces of the AgNPs make contact and fuse to form a
solid silver layer. Actually, in the thermal analysis of dried
alkylamine-encapsulated AgNP powder shown in Fig. 7, a notable
exothermic reaction, accompanied by a simultaneous weight loss,
was observed at a temperature lower than 100 �C and peaked
around 130 �C. It is most probable that the weight loss should be
due to the (endothermic) elimination reaction of alkylamine from
the AgNPs, while it promotes the considerable exothermic
fusion reaction between AgNPs. The exothermic nature of the
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Figure 5 | Evidence for chemical connection of the printed silver layer with photoactivated polymer surface. (a) Raman spectra (i) from the top surface

and (ii) from the bottom interface of the printed silver layer on photoactivated polymer surface, (iii) from the bottom interface of the vacuum-evaporated

silver layer on the photoactivated polymer surface, (iv) from the top surface of the deposit obtained by simple casting of the alkyl-carboxylate-encapsulated

silver nanometal ink. (b) Adhesive strength of the printed silver layer to the substrate surface, and (c) water contact angle on the photoactivated polymer

surface, both plotted as a function of the VUV irradiation dose.
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fusion reaction would promote the cascade formation of a
self-fused solid silver layer at room temperature. In particular, the
exothermic process should raise the local temperature at the top
Ag surface, which would make the alkylamine group detached
more from the surface and thus promote additional adsorption of

AgNPs on the roughly bare Ag surface. We consider that the
scenario is quite consistent with the ink concentration
dependence of the layer thickness, as presented in Fig. 4a;
presence of many more AgNPs in the vicinity of the Ag surface
should promote the adsorption of more AgNPs. Additionally, the
mobile nature of ligand molecules in the fluidic ink would
effectively eliminate the ligand molecules from the self-fused
silver layer, which differs from the usual sintering process for
aggregated AgNPs.

The ink stability can be kept good enough, in spite of the
relatively weak alkylamine encapsulation and concomitant
facile chemisorption on the photoactivated surface. We consider
that the following facts should be a clue for understanding
the peculiar nature of the alkylamine-encapsulated silver
nanometal ink: Ink stability can be acquired at sufficiently
high concentration (for example, at 50 wt%). However, the
stable dispersion is lost if it is diluted; AgNPs easily aggregate in
the diluted ink at 1.25 wt% (see Supplementary Fig. 4). It is
most probable that the high alkylamine concentration in
the high-concentration ink is indispensable for achieving
equilibrium colloidal states of the nanometal ink where the
alkylamine can repeatedly attach to and detach from the Ag
surface in the ink.

Printing flexible and transparent conducting electrodes.
The present technique enables the print production of
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irradiation with a dose of 512 mJ cm� 2 (solid curve) and 25 days after the VUV irradiation (dashed curve). The irradiation affords appearance of the ESR

signal due to peroxy radicals that are most probably formed by the reaction of carbon radicals with oxygen. ESR absorption spectra obtained by integrating
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Figure 7 | Thermal analysis of AgNP powder. TG-DTA curves for the dried

alkylamine-encapsulated AgNP powders. We used the AgNP powder for

the measurement immediately after the as-synthesized material was dried

out under ambient conditions.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11402

6 NATURE COMMUNICATIONS | 7:11402 | DOI: 10.1038/ncomms11402 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


submicron-resolution conductive patterns through the reaction of
the nanometal ink with the photoactivated polymer surface.
We call the process surface photoreactive nanometal printing.
The technique is applicable to the fabrication of many electronic
devices. Transparent conducting electrodes (TCEs) used for touch
screen technologies are one such class of devices, since TCEs can
be manufactured with only narrow conductive metal wires if the
line width of the wire is comparable to the diffraction limit of
visible light. To investigate the performance of printed patterns as
TCEs, two critical performance criteria of sheet resistance (Rs)
and transmittance (T) are plotted in Fig. 8a, in comparison to
other representative TCEs38–40. As shown, the present technique
provides the highest-performing TCEs, including the most
widely used indium tin oxide TCEs. The obtained TCEs also
present a higher tolerance to bending than the PEN substrate
alone, as presented in Fig. 8b: The increased resistance in plots
with 2.5 mm bending radius at 4102 bending cycles is caused not
by the deterioration of the printed silver pattern, but by the
degradation of the PEN substrate. It clearly demonstrates the
applicability of the technique for flexible electronics. We
manufactured a capacitive-type touch-screen sensor of width
B18 cm (with a touch sensor line width of 2mm at intervals of
300mm, and frame line width of 50 mm) on a PET sheet, as
depicted in Fig. 8c. Sensing operations were successfully
performed with the sensor sheet (Supplementary Movie 2).

Discussion
The printing technique is simple, consisting only of masked VUV
irradiation and blade coating of alkylamine-encapsulated
nanometal ink. The method utilizes a ligand conversion

(chemisorption) for weakly encapsulated AgNPs that triggers
the self-fused formation of high-resolution patterned silver layers
adhered strongly to the substrate. The achieved resolution and
quality has previously been impossible to produce by printing
techniques based on physisorption phenomenon of the fluidic
inks. Considering the VUV wavelength, the resolution could be
improved further. The process does not require a vacuum
atmosphere, which is a main source of energy consumption in the
production of electronic devices. Additionally, the consumption
of nanometal ink can be minimized (to as small as B1–3 ml for a
10-cm2 substrate), as almost all silver contained in the ink is used
to transform into metal wires. The method is particularly
promising as a next-generation technology for producing
electronic products with flexibility, large areas and arbitrary
shapes, as well as for the exploration of applications in which thin
films or wiring patterns of precious metals are needed.

Methods
Preparation of silver nanometal ink. AgNPs were synthesized by thermal
decomposition of silver oxalate, Ag2(C2O4), as reported in the literature19. The
silver oxalate was activated by alkylamines (R-NH2) via the formation of
oxalate-bridged silver alkylamine complexes, [(R-NH2)Ag(m-C2O4)Ag(R-NH2)].
The oxalate-bridged silver alkylamine complexes underwent low-temperature
decomposition at 110 �C with evolution of CO2, and alkylamine-encapsulated
AgNPs were generated in an almost quantitative yield. Various alkylamines were
adopted to activate the silver oxalate in order to prepare a stable, concentrated and
low-viscosity silver nanometal ink. In a typical case, N,N-dimethyldiaminopropane,
hexylamine and dodecylamine were mixed along with a trace amount of oleic acid
to synthesize AgNPs that are dispersed independently in a mixed solvent of
n-octane and n-butanol (4:1 in volume). The AgNPs are in spherical shape, with a
mean dimension of 13.6 nm and a narrow size distribution (s¼ 1.1 nm). In this
study, silver nanometal inks were prepared in the concentration range between 40
and 60 wt%.
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We also used silver nanometal ink with alkylcarboxylate encapsulation for
reference measurements (Fig. 3b). The ink was obtained by thermal decomposition
of silver dodecanoate (AgC12H24COO), according to the literature41. The
alkylcarboxylate-encapsulated AgNPs are spherical in shape, with a mean
dimension of B5 nm.

Fabrication of perfluorinated polymer layer. We used a silica plate, PEN or PET
film as the base substrate. A thin layer of amorphous perfluorinated polymer,
poly[perfluoro(4-vinyloxy-1-butene)] (Cytop), was fabricated on the substrate by
spin coating of diluted solution in fluorinated solvent (CTL-809M, Asahi Glass Co.,
Ltd., Japan) at 2,000 r.p.m. for 60 s at room temperature. Then the films on silica
were dried at 180 �C for 60 min, and those on PEN or PET films were dried at 80 �C
in vacuum for 60 min.

Masked irradiation of VUV light. We used a UV dry processor (VUS-3150, ORC
Manufacturing Co., Ltd. Japan) for irradiating VUV light by an Xe2 excimer lamp.
The films were set in a chamber filled with N2 gas with residual O2 lower than
300 p.p.m. Uniform irradiation is achieved by periodic motion of the sample stage
with a period of 20 s. The average dose rate was estimated at 6.4 mW cm� 2, and
the irradiated power density was adjusted with a filter (synthesized silica plate
coated with thin Cr) and irradiation duration. A patterned photoactivated polymer
surface was produced by masked VUV irradiation through a photomask composed
of a predefined mask pattern of Cr on a synthesized silica plate.

Characterization of photoactivated polymer surface. Contact angle
measurements were conducted with a contact angle and surface tension analyser
(FTA188; First Ten Angstroms, Inc., USA). Atomic force microscope images were
obtained with a scanning probe microscope (Dimension 3000 Nanoscope IIIa;
Bruker Co., Ltd., USA). XPS measurements were carried out using an XPS
apparatus (ULVAC-PHI 5000, ULVAC Inc., Japan) with monochromatic Al Ka

radiation (1,486.6 eV, 15 kV). Because the Cytop layer is highly insulating and
easily charged up by an incident beam, the films were slightly coated by
vacuum-evaporated Ag to cover the partially polymer surface by island-shaped Ag.
All the measurements were conducted with a neutralizer, and the offset shift was
corrected by the reference signal of Ag 3d5/2 (¼ 368.3 eV). ESR measurements were
carried out using an X-band ESR apparatus (JES-FA200, JEOL Ltd., Japan). A thick
Cytop film with a thickness of B25 mm was fabricated by repeated (eight times)
spin coating on a silicon wafer, and was peeled off from the wafer. The
free-standing film was used in the ESR measurement. For this purpose, we used
another Cytop (CTX-809SP2, Asahi Glass Co., Ltd.), which enables the facile
peeling of Cytop film from the wafer. We could not detect any ESR signal from the
unirradiated polymer film.

Coating of silver nanometal ink. We used a bar coater (AB3125, The Paul
N. Gardner Company, Inc., USA) for the blade coating of silver nanometal ink on
substrates with photoactivated polymer surfaces. We first fixed the substrate on a
table, and deposited two or three drops of nanometal ink on the substrate surface
near its edge. Then the line edge of the blade composed of smoothly polished
glass-plate edge was put gently on the drops, and the blade was swept over the
substrate surface at typical sweep rate of 2 mm s� 1.

Characterization of the printed silver layer. We used a digital microscope
(VHX-5000; Keyence Co. Ltd., Japan) for the optical microscope observations.
The SEM images were obtained with a scanning electron microscope with a
field-emission gun (JSM-7000 F or -7500 F; JEOL Ltd.). The samples for
cross-sectional SEM observation were prepared by an ion slicer (IB-09060CIS;
JEOL Ltd.), keeping the sample temperature at � 150 �C. Electrical properties of
the printed silver patterns were measured by four-terminal measurements using a
semiconductor parametric analyser (E5270A; Agilent Technologies Co. Ltd., USA).
The thickness profile was estimated by using a stylus profiler (Alpha-Step D-500;
KLA-Tencor Co. Ltd., USA) or by a scanning probe microscope (Dimension 3000
Nanoscope IIIa; Bruker Co., Ltd.). Raman measurements were carried out using a
confocal Raman microscope (inVia, Renishaw Co. Ltd., UK). The adhesion
measurements were carried out using a pull-off adhesion tester (PosiTest AT-A;
DeFelsko Co., USA), conformable to ISO 4624.

Characterization as a flexible TCE. We fabricated various silver wire grid
patterns at uniform intervals of 250mm with different line widths (15 kinds
between 0.8 and 100 mm) by the present surface photoreactive nanometal printing
technique on a silica substrate. Transmittance is estimated with a UV–vis
spectrometer (U-3500; Hitachi High-Tech Co. Ltd., Japan) by averaging the
transmittance in the wavelength range between 400 and 800 nm. Bending test,
conformable to JIS C5016, is carried out using a flexing tester (FPC; Yasuda Seiki
Seisakusho Ltd., Japan) for the printed silver layer on a PEN substrate (Q65HA,
Teijin Dupont Films Ltd., Japan). The moving cycle was set at 0.72 s. The
measurements were terminated due to the generation of cracks in PEN substrate
itself at the bending radii of 2.5 mm.
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