In-situ UV absorption spectroscopy of ozone in gas phase and in water

J.-S. Oh^{1,2}, H. Yajima³, K. Hashida¹, K. Ogawa¹, I. Serizawa³, H. Furuta^{1,2}, A. Hatta^{1,2}

¹Dept. of Electronic and Photonic Systems Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan, E-mail:jun-seok.oh@kochi-tech.ac.jp

²Center for Nanotechnology, Research Institute of Kochi University of Technology, Kami, Kochi 782-8502, Japan ³ORC Manufacturing Co., Ltd., Chino, Nagano 391-0011 Japan

Using an in-situ UV absorption spectroscopy, we measured UV absorption spectra of O_3 in the both gas and liquid phases. The analysis of UV absorption spectra indicated the generation of H_2O_2 and O_2 with O_3 , and the concentration O_2 in the early stage played an important role in generation of O_3 .

1. Introduction

Ozone (O_3) is a well-known molecule as a strong oxidant and it can be generated by O_2 flow (and / or air) through electrical discharge. [1] In recent, O_3 is getting important in many applications including life science as well as the traditional water treatment, air cleaning, semiconductor and industry. [2]

For the measurement of the absolute concentration of O_3 is well established based on the light absorption technique for measuring an absorbance at a fixed wavelength. It is common that the measurements of the both gaseous O_3 and O_3 in water associate with a UV at 254 nm from a mercury lamp. Also, a combination of a chemical probe and a LED light for detecting the change of color at a fixed wavelength is open used for dissolved O_3 in water. However, these methods unable to support sufficient information to understand the composition of species in gas or liquid.

Here, we used a traditional method of UV absorption spectroscopy to detect O_3 and other species in gas and water. Also, we will discuss the evolution of O_3 generating process using in-situ measurement.

2. In-situ UV absorption spectroscopy

A conventional UV-Vis spectrophotometer (U-3900, Hitachi) was used for detecting O_3 in the both gas

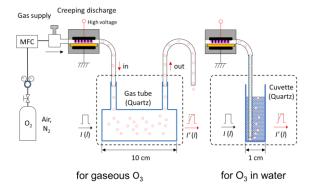
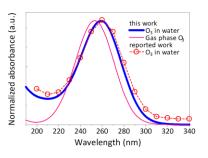



Fig. 1: Schematic of the experimental set-ups to monitor the gas phase O₃ (lhs) and O₃ in water (rhs).

Fig. 2: UV absorption spectra of gaseous O_3 and dissolved O_3 in water with a reported spectrum.

and liquid phases (in Fig.1). O_3 generated through an O_2 creeping discharge and delivered into a quartz tube¹ for gaseous O_3 or a quartz cuvette for O_3 in water. Fig. 2 shows the absorption spectra of stable O_3 measured in the both phases. It noted that the spectrum of O_3 in water (or ozonated water) has the absorption peak at slightly longer wavelength of 260 nm and shows an absorption shoulder at short wavelength range below 220 nm as compare to the spectrum of O_2 plasma bubbling in water for 12 min, we found that there are much high concentration of H₂O₂ (42 mg/L) and O₂ (3 mg/L) with O₃ (9 mg/L). Also, the concentration of O₃ at an early stage.

References

[1] I. Somiya, Ozone Handbook, Japan Ozone Association, Tokyo (2004) in Japanese.

[2] C. Gottschalk, J. A. Libra, A. Saupe, Ozonation of Water and Waste Water, Wiley-VCH, Weinheim (2000).
[3] R. Suzuki, Readout, 25 (2002) 29–31 in Japanese.

¹ Quartz tubes for detecting gaseous reactive molecules were provided by Mr. S. Shioya and Mr. T. Hayakawa of ORC Manufacturing Co. Ltd.