大気圧プラズマジェットと真空紫外線を用いた CO₂還元

CO₂ reduction using atmospheric pressure plasma jet and vacuum ultraviolet ray

○髙木海 (K. Takagi)¹¹、鈴木孝宗 ²²、岡崎晟大 ¹)、早川 壮則 ¹¹

丸田晃大 2), 3)、寺島 千晶 2), 3)、藤嶋 昭 2)

オーク製作所1)、東理大総研2)、東理大院理工3)

連絡先: 髙木海 (e-mail: k-takagi@orc.co.jp)

【緒言】

今日、地球温暖化の原因物質である二酸化炭素 (CO₂)を還元し再利用する、カーボンリサイクルが研 究されている。カーボンリサイクルは、電気化学、熱触媒や人工光合成(光触媒)などの手法が用いられ ている。しかし、従来の手法は高純度の CO2 ガスが必要であり、分離・回収が問題となる。そこで、 本研究は大気圧プラズマジェット (APPJ)と真空紫外線 (VUV)に着目した。APPJ は、大量の CO2 を CO に分解することが可能であり、排ガスの直接利用が見込める。他方 VUV は、水面に照射すること で OH・や H・を生成することが可能である。Sakakura ら コレは、APPJ と VUV を用いて N・および H・ を生成し、アンモニアの直接合成を報告している。APPJ と VUV より生成したラジカルを反応させ、 有用資源としてギ酸 (HCOOH)や酢酸 (CH₃COOH)等の直接合成を検討した。

【実験方法】

実験装置を図 1 に示す。実験は、高電圧側に石英被覆モリブデン箔、グ ランド側に銅箔を巻き付けた誘電体バリア放電 (DBD)管を使用した。DBD 管に CO₂ を 100 mL/min、アルゴン (Ar)を 1,000 mL/min で供給し、バイ ポーラパルス電源の電圧を 10 kV、パルス幅を 1.0 μsec、周波数を 83 kHz とすることでAPPJを発生した。セルに5mLの超純水を満たし、APPJを 5 分間照射した。APPJ 照射前または照射時に、エキシマランプを用いてセ ル底部から波長 172 nm の VUV を照射した。APPJ は発光分光光度計、ガ スは FT-IR、溶液はイオンクロマトグラフィーにより評価した。

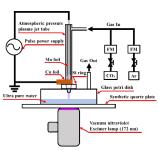
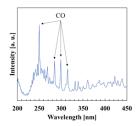



図 1 APPJとVUVに よる CO2 還元実験装置

【結果・考察】

図2にAPPJの発光スペクトルを示す。DBD 部で生成 した CO が、Ar によって励起されることを確認した。ま た、FT-IR から 4,000 ppm の CO を検出した。各条件で のギ酸生成量を図3に示す。APPJ照射のみで、1.0 nmol のギ酸を生成した。一方、VUV照射を併用した場合、ギ 酸の生成量が減少した。これは、VUV または生成した 図2 APPJの発光 OH·によりギ酸が分解されたためだと考えられる。

スペクトル

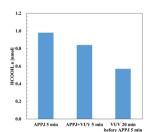


図3 ギ酸の生成量

【結論】

APPJと VUV を用いて CO2 を有用資源に直接合成する方法を検討し、ギ酸の合成を確認した。しか し、生成量が微量であったため、増産に向けては気液界面での反応を制御する必要がある。

【謝辞】

本研究は東京理科大学光触媒推進拠点の「共同利用・共同拠点」の研究費の助成を頂いて行われた ものです。

【参考文献】

1) T. Sakakura et al., ChemPhysChem (2019), 20, 1467