ニッケル担持セリウム-チタン複合酸化物型熱触媒による逆水性ガスシフト法を用いた二酸化炭素還元率向上へのアプローチ (東理大理工¹・東理大総研²) ○中条 隼¹,²・髙木 海¹,²・鈴木 孝宗²・寺島 千晶¹,²・藤島 昭² Approach to improve carbon dioxide reduction rate using reverse water-gas shift reaction with nickel-supported cerium-titanium composite oxide thermal catalyst (¹Tokyo University of Science, Faculty of Science and Technology, Department of Pure and Applied Chemistry, ²Tokyo University of Science, Research Institute for Science and Technology, Research Center for Space System Innovation) O Hayato Nakajo^{1,2}, Kai Takagi^{1,2}, Norihiro Suzuki², Chiaki Terashima^{1,2}, Akira Fujishima² Solar catalysts using sunlight are known as a clean CO₂ reduction method among CO₂ reduction methods that recycle CO₂ into a useful resource. Cerium oxide (CeO₂), a typical thermal catalyst, requires high activation energy for Ce reduction, while a mixed oxide of CeO₂ and titanium oxide (TiO₂) loaded with Ni has been reported to improve Ce reduction through a phase change to an oxygen-depleted pyrochlore phase (Ce₂Ti₂O₇) and the oxygen transport effect of Ni.¹⁾ In this study, CO₂ is diluted with H₂ in the conventional CO₂ decomposition process and a reverse water gas shift reaction (RWGS reaction) is incorporated. As a result, the conversion rate to the target product, CO, increased to about 70%. In addition, the oxide composite exhibited excellent cycle characteristics (Fig. 1). Keywords: Carbon Dioxide Reduction, Cerium Dioxide, Titanium Dioxide, Reverse Water Gas Shift Reaction, Solar Thermal Catalyst 太陽光を用いる太陽熱触媒は、 CO_2 を有用資源へと再利用する CO_2 還元法の中でも、クリーンな CO_2 還元手法として知られる。代表的な熱触媒である酸化セリウム (CeO_2)はCeの還元に高い活性化エネルギーが必要であるが、Niを担持した CeO_2 と酸化チタン (TiO_2)の混合酸化物 (CeO_2 - TiO_2) において、酸素欠乏状態のパイロクロア相($Ce_2Ti_2O_7$)との相変化とNiの酸素輸送効果によるCeの Fig.1 Conversion to CO over 50 cycles 還元度の向上が報告されている $^{1)}$ 。本研究では従来の CO_2 分解過程において CO_2 を H_2 で希釈し、逆水性ガスシフト反応 (RWGS 反応) を組み込んだ。結果、目的生成物 である CO への変換率が約 70%程度まで向上した。また、酸化物の複合化により優れたサイクル特性を示した(Fig. 1)。 1) Chongyan Ruan et al., Energy Environmental Science, 2, 2019, 767.